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Introduction & motivation

Introduction and motivation

Observation of ‘hierarchical’ structure in
predictive coding circuits ...

... clear signature of compositionality!
“Modularity of mind” (Fodor 1983)

and modularity in our understanding of mind!

More broadly: ACT as tractable but
rigorous approach to complex systems

Slogan: predictive coding as dynamical
semantics for certain statistical games

Figure: Friston and Stephan (2007, Fig.3)
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Overview

Overview of main contributions
Bayesian lenses, formalizing a “chain rule” for Bayesian inference.
The corresponding result that “Bayesian updates compose optically”.

The concept of statistical game, by which losses are attached compositionally to lenses.
The classification of various loss functions as sections of 2-fibrations of statistical games.

Relative entropy gives a strict section, capturing its chain rule.
Free energy is lax, inherited from log-likelihood.

The notion of ‘copy-composition’, which makes the above classification work.
And copy-composite versions of the foregoing ...

A new account of general open dynamical systems via polynomial coalgebra
plus an associated construction of dynamical lenses (‘cilia’).

Approximate inference doctrines: dynamical semantics for statistical games
exemplified (laxly, non-unitally...) by predictive coding.

Plus an awful lot of exposition ... And a lot of new directions ...
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Bayesian lenses

Bayesian lenses: the ‘chain rule’ for inference

A ‘hierarchical’ model factorizes into one predictive process c, then another, d.

This is1 sequential composition d ‚ c in a category C of stochastic maps.

The task of a predictive coding system is then to invert this composite model.
That is, it pairs the predictive processes c, d with inversions c7, d7.

Bayes’ law: inversion depends on priors as well as predictions (‘likelihoods’).
Hence if c : XÑ‚ Y , then c7 is state-dependent: CpI,Xq Ñ CpY,Xq.

State-dependent channels form an indexed category Stat : C op Ñ Cat (Def. 4.3.2)
and Bayesian lenses are the morphisms of its (op)Grothendieck construction (Def. 4.3.8).

This tells us that pd, d7q ˝| pc, c7q “ pd ‚ c, c7 ˝ d7
cq.

Alternatively: if pd‚cpz|xq “
ř

y pdpz|yq pcpy|xq, then p
c7
π‚d7

c‚π
px|zq “

ř

y pc7
π

px|yq p
d7
c‚π

py|zq.
1or at least, appears at first to be..!
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Bayesian lenses

Bayesian updates compose optically
The Grothendieck construction tells us how to compose Bayesian lenses.
It doesn’t tell us that the composite of Bayesian inversions equals the inversion of the composite.

We need to check that pd ‚ cq: “ c: ˝ d:
c. Happily, this is true, up to almost-equality (Thm. 4.3.14).

d:
c‚π

π

c

d

c:
π

X Z

“

d

π

c

c:
π

X Z

“

c

π

d

X Z

Hence : almost surely defines a section C Ñ BayesLens of the Grothendieck fibration
πLens : BayesLens Ñ C (Cor. 4.3.15), mapping c ÞÑ pc, c:q.
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Bayesian lenses

Bayesian lens miscellany

Strictly speaking, : is well-defined only where morphisms have inversions for all priors:
a “full support” assumption (Rmk.s 4.1.20, 4.3.3).

Can circumvent this with support objects and dependent lenses (Braithwaite et al. 2023).

Lawfulness (§4.3.4): Bayesian lenses are not ‘lawful’ lenses! (They ‘mix’ information.)

BayesLens inherits a monoidal structure from C (Prop. 4.3.11), but : is only lax monoidal
because there may be correlations across a joint prior!
(We’ll see more of such laxness later.)
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Statistical games

Statistical games for approximate inference

: classifies exact inference — but there are many lenses outside its image.
Can we classify these approximate systems, too? (We’ll need to, for predictive coding.)

An arbitrary lens won’t be very good at inference: hence, choose one with good performance2.
This means measuring that performance, or: equipping lenses with loss functions.

A statistical game pc, c7, Lcq : pX,Aq Ñ pY,Bq is a Bayesian lens pc, c7q : pX,Aq ÞÑ pY,Bq,
paired with a loss function Lc, i.e. a “state-dependent effect” B

X
ÝÑ‚ I (Def. 5.3.6).

We require C to have bilinear effects (Def. 5.3.1).
In sfKrn, or VectR`

, Lc is equivalently Cp1, Xq ˆ B Ñ R` (Ex. 5.3.5).

How do these compose? What are some examples? How do they relate to predictive coding?

2relative to a given problem
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Statistical games

Fibrations of statistical games: loss composition

Just as attaching inversions to channels gives a fibration, so does attaching losses to lenses.
Idea:

ř

X:C op StatpXq op
Statp´qp“,Iq
ÝÝÝÝÝÝÝÝÑ MonCat

B
ÝÑ Bicat yields an indexed bicategory

(when C has bilinear effects).
We can lift this over BayesLens, giving StatGame

πLoss
ÝÝÝÑ BayesLens

πLens
ÝÝÝÑ C.

Then Ld ˝ Lc “ Ld
c ` d7

c
˚
Lc. Explicitly: pLd ˝ Lcqπpzq “ Ld

c‚πpzq ` E
y„d7

c‚πpzq

“

Lcpyq
‰

.
Well-behaved loss functions satisfy this general rule: that is,
just as : is a section of πLens, they give sections of πLoss.

These loss models capture some well-known examples and their “chain rules”:
relative entropy3 (§5.3.3.1); log-likelihood (§5.3.3.2); free energy (§5.3.3.3) ...
... with some twists!

1 We need copy-composition;
2 log-likelihood (and hence free energy) is lax4.
3Relative entropy doesn’t actually need the inversions (Rmk. 5.3.23).
4This makes use of the bicategorical structure of StatGame (i.e., differences of losses) (§5.3.2).
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Statistical games

Copy-composition

For parallel channels c, c1 : XÑ‚ Y , the relative entropy Dc,c1 : X Ñ R` is defined by

x ÞÑ E
y„cpxq

“

log pcpy|xq ´ log pc1py|xq
‰

.

It almost satisfies the chain rule

Dd‚c,d1‚c1pxq “ Dc,c1pxq `
`

c˚Dd,d1

˘

pxq

“ Dc,c1pxq ` E
y„cpxq

“

Dd,d1pyq
‰

Except marginalization doesn’t commute with log, and pd‚cpz|xq “
ř

y pdpz|yq pcpy|xq.
We need composition ‚ to yield the joint distribution pdpz|yq pcpy|xq: copy-composition.

§5.2 constructs a bicategory Copara2pCq and recapitulates the Bayesian lens story.5
On this base, the aforementioned examples do yield sections (with relative entropy strict).

5I now see neater constructions: cf. bonus slides...
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Statistical games

Monoidal miscellany

Worth pointing out that there are many monoidal structures around (§5.4).

This means we can model “inference systems in parallel”,
and measure their performance in parallel (Def. 5.4.7, Rmk. 5.4.8, Prop. 5.4.9).
But: correlations in the prior ùñ loss models generally lax monoidal.

` also gives a monoidal structure on loss models (Prop. 5.3.18): “sum the losses”.
We can use this to obtain loss models compositionally: e.g. FE “ KL ` MLE (Def. 5.3.26).

N.B. The category theory of some of these structures is not fully worked out.
I didn’t examine all the coherence conditions for monoidal indexed bicategory !
But everything should be well-behaved nonetheless.
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Coalgebraic dynamical systems

Open dynamical systems via generalized polynomial coalgebra (1)

At this point we turn to dynamics.
I wanted two things, not available with existing compositional constructions:

1 Somewhere I could define “categories with dynamic morphisms”;
2 with dynamics that may be both continuous-time and stochastic (e.g. Markov processes).

For (1), it made sense to work with coalgebra — and particularly polynomial coalgebra.
For (2), I needed some tricks.

A ‘closed’ dynamical system with time T is an action of T on some state space, BT Ñ Cat.
These correspond to Ž-comonoid homomorphisms6 SyS Ñ yT in Poly.

Then: an open system with time T and interface p is a morphism β : SyS Ñ rTy, ps

... that yields a Ž-comonoid homomorphism for any ‘inputs’ (Def. 6.2.1).

6The Ž-comonoid homomorphism condition enforces the T-action laws.
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Coalgebraic dynamical systems

Open dynamical systems via generalized polynomial coalgebra (2)

The preceding definition induces an opindexed category CoalgT : Poly Ñ Cat (Prop. 6.2.10)7.
It reduces to the ‘usual’ coalgebras when T “ N (Rmk. 6.2.7);
it captures closed systems with the trivial interface y (Prop. 6.2.4);
it has a monoidal structure, for systems in parallel (Prop. 6.2.10);

and it can be instantiated in non-deterministic settings, as follows (§6.2.2).

A monad M on Set induces a comonad M̄ on Poly.
coK`pM̄q has morphisms with ‘backward’ M -effects (Rmk. 6.2.19, Def.s 6.2.14, 6.2.15).
This yields dynamical systems with M -effectful update maps.
In particular, a probability monad gives open Markov processes.

We can also do open random dynamical systems (§6.2.3), but less neatly.

7Reindexing is by post-composition with Poly morphisms.
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Coalgebraic dynamical systems

Cilia

For the dynamical semantics, I sought categories of “dynamical lenses”.
Cilia are dynamical systems that control lenses.

Short story8: given a category D enriched in Poly, base change along CoalgT : Poly Ñ Cat
yields a bicategory rD with “dynamical D-morphisms” as 1-cells.

Longer story (§6.3): construct a Poly-category of Bayesian lenses, with hom v´,“w.
Then the (monoidal) bicategory CiliaT has hom categories CoalgT`

v´,“w
˘

(Def. 6.3.8).

We also have a ‘differential’ version — sketched in §6.3.2.

8I only noticed this account after submission...
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Approximate inference doctrines

Approximate inference doctrines: putting the pieces together

Basic idea of Def. 7.3.1: (monoidal) functors PC Ñ Cilia that factorize as
PC Ñ PBayesLens Ñ PStatGame Ñ Cilia, with the first two being sections.
Here, P denotes (‘external’) parameterization, which is itself functorial — cf. §3.2.2 and §7.2.

As we’ve seen, there’s quite some laxness about ...
and each step may only be defined on the image of the preceding ...
and in this formulation, predictive coding isn’t unital9.
But with these caveats, we do get (most of) a functorial semantics!

9as the posterior is (instantaneously) determined by the parameter/dynamical state, not the input observation
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Approximate inference doctrines

Predictive coding as approximate inference doctrine

Predictive coding can be understood as
“gradient descent on the Laplacian free energy, with respect to the posterior mean”.
Thus the Laplace doctrine (§7.3.1) is defined on C “ FdGauss (§7.1).
(N.B. Nonlinear Gaussian channels are not closed under composition, but they are under copy-composition.)

Schematically: FdGauss
`

ÝÑ PBayesLens
PLFE
ÝÝÝÑ PStatGame

∇
ÝÑ DiffCilia

ş

ÝÑ Cilia.
(` is the non-unital bit. ∇ computes gradient descent with respect to the parameterization.

ş

is time-integration.)
Functoriality enforces a “mean field approximation” in `. (Prop. 7.3.7.)

Hebb-Laplace doctrine (§7.3.2): make a particular choice of parameterization in PFdGauss,
i.e. for each c : X

ΘY
ÝÝÑ‚ Y , µcpxq “ θ hpxq, with θ a square matrix on Y and h differentiable.

(Idea is θ represents synaptic weights, h the neural activation function.)
Then, proceed as before — but now we also learn the synaptic parameters (a ‘Hebb’ rule).
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On-going & future work

Some next steps for compositional predictive coding

On the syntactic side — better accounts of copy-composite models (see bonus slides):
factor graphs (via decorated cospans), and their directed cousins (right adjoints?);
“stochastic sections” (with links to quantitative type theory and ‘nested’ systems).

On the semantic side — I think a better perspective is from information geometry.
Precision-weighted prediction errors are tangent vectors to Gaussians10!
This yields a precise connection to ‘differential’ learners

and constructions like dynamic categories (Shapiro and Spivak 2022)
and hence more generally structured P.C. architectures (Salvatori et al. 2023).

Hopefully: a ‘geometric’ understanding of statistical games, perhaps via (Vigneaux 2021)?

10with known covariance
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On-going & future work

Categorical systems theory
More broadly, many links to categorical cybernetics / systems theory to explore.

Regarding coalgebra and dynamics:
Does CoalgT

ppq form a topos? Is it related to the topos of Int-sheaves (Schultz et al. 2020)?
Do RDSs relate to Markov processes via “randomness pushback” (Fritz 2019, Def. 11.19)?

How best to formulate dynamical inference?
And then: active inference ...

What is the relationship between planning, backward induction, and RL?
What is the relationship between active inference and open economic games?
Or between backward induction and message-passing/expectation-maximization?

Spatial systems theory: interfaces typically have geometry ...
Hence: multi-agent systems? Consensus, cohomology and corporations?
There’s a sheaffy relationship between message-passing and diffusion (Peltre 2021) ...

Universality of the free energy principle:
by expressing active inference systems-theoretically, we should be able
to formalize its claimed universality as an adjunction of systems theories.

And many further directions sketched in Chapter 8!
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Bonus slides

Factor graphs: another route to copy-composition

Here’s one alternative to Copara2pCq.

Instead of channels c as horizontal 1-cells, use their densities pc — or, generally, costates.
Construct a decorated cospan double category accordingly:

e.g. A
pc
ÝÑ C

pd
ÝÑ D :“

pc pd

A B C D

0-cells are sets of objects in C.
Horizontal 1-cells are cospans decorated by densities (on the product of the objects at the apex).
Vertical 1-cells are (indexed) comonoid homomorphisms in C; 2-cells are more general.

This formalizes factor graphs (undirected graphical models).
It has copy-composition built in, without hacks.
There is a lax embedding of C.
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Bonus slides

Alternatively: stochastic sections

Another alternative: observe that copy-composition is composition of ‘graphs’ XÑ‚ X b Y .
These are “stochastic sections” of the projection X ˆ Y Ñ X.

There is a bifibration E over suitable C whose objects are such (deterministic) bundles in C,
and whose morphisms are (non-deterministic) morphisms in C between them.

Consider the bicategory of spans of such bundles.
We can decorate each span with sections of the left leg.
Assuming E satisfies Beck-Chevalley: push-pull yields a strong composition of decorations.

This gives a decorated span bicategory of “hierarchical models”.
Again, we get copy-composition automatically.

And we can construct a version of Bayesian lenses here, too.
Exact lenses make a ‘butterfly’ diagram commute (see next slide).
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Bonus slides

Butterfly diagram for exact Bayesian lenses

Here pc, c7q is a Bayesian lens B ÞÑ C in the “stochastic section” sense, and β is a prior.

C

1 B E C

B

β c

πE
B

πE
C

c7

β

21 / 23



Bonus slides

Variation on the semantics for predictive coding (1)

If we don’t mind doing away with some of the structure of approx. inf. doctrines,
we can define a Poly-category with objects given by N and hom-polynomials

vl,mw :“
ÿ

iě´l

Gpl ` iqΓpl,mq yR
m Hpi`mq

posterior (output): Gpnq is the space of Gaussians on Rn;
likelihood (output): Γpl,mq is Gaussian stochastic sections from Rl to Rm;
prediction error (input): Hpnq is Rn Ñ Rn; and
observation (input): Rm.

This yields a dynamic bicategory PC (by the earlier recipe),
and predictive coding gives a strong functor Γ Ñ PC.
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Bonus slides

Variation on the semantics for predictive coding (2)

If we assume Gaussians with fixed covariance, then the points of TGpnq are pairs pµγ , ηγq,
where µγ : Rn is the mean determining a Gaussian γ : Gpnq,
and ηγ : Rn Ñ Rn :“ y ÞÑ Σ´1

γ py ´ µγq is a precision-weighted prediction error (= “ByEγ”).
Hence TGpnq ãÑ RnHpnq !

We can use this to cast predictive coding in the manner of Shapiro and Spivak (2022):
Let t :“

ř

x:R yTxGp1q. Then tbm –
ř

x:Rm y
ś

i:rms TxiGp1q.
A morphism ϕ : tbm Ñ tbn is a pair pϕ1, ϕ

7q:
ϕ1 : Rm Ñ Rn predicts the next layer’s mean;
ϕ7 :

ÿ

x:Rm

ź

j:rns

Tϕ1pxqjGp1q Ñ
ÿ

x:Rm

ź

i:rms

TxiGp1q

passes back the posterior means and prediction errors.

Then: can give a coalgebra on rtbm, tbns which updates by gradient descent on the energy.
But note that this enforces a very strict mean field approximation!
(The latter so that “horizontal composition” is strong not lax...)
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