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Introduction Where were we? (Bayesian lenses etc.)

Natural adaptive systems: the story so far

I’m interested in natural adaptive systems: organisms that perceive and act.

We can think of perception as a process of Bayesian inference:
an organism has sensors, detecting data in Y ;
it maintains a belief β : IÑ‚ X about the world X,
and about how the world causes its sense data c : XÑ‚ Y .
Given these, it updates its beliefs via c7

β : Y Ñ‚ X.

Together, c : XÑ‚ Y and c7 : CpI,Xq Ñ CpY,Xq are called
a Bayesian lens pc, c7q : X ÞÑ Y . (It’s a bidirectional process!)

C is our ambient (concrete) category of ‘channels’ XÑ‚ Y .
Arrows A Ñ B are functions.
Lens composition: pd, d7q ˝| pc, c7q “ pd ‚ c, c7 ˝ d7

cq.
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Introduction Where were we? (Bayesian lenses etc.)

Exact vs approximate Bayesian lenses

Bayesian lenses: attach ‘state-dependent’ inversions c7 to channels c.

This gives a fibration πLens : BayesLens Ñ C by pc, c7q ÞÑ c.

Bayes’ rule (almost surely [1]) gives a section, c ÞÑ pc, c:q.
(BUCO: “Bayesian updates compose optically” [2]).

These lenses ‘exactly’ satisfy Bayes’ law.
But there are lots of other Bayesian lenses!

We can think of non-exact lenses as approximate inversions:
useful, because exact inference is computationally hard.

This entails a need to measure performance. Enter statistical games!
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Statistical games: the basics ‘Local’ approximate inference

Another motivation: local inference

Biological systems are composed of cells.

Moving information around is expensive!
(This is where most energy is spent in machine learning.)

So biology wants systems that can be optimized ‘locally’.
Hence: compositional inference, plus compositional ‘measurement’.

These measurements will be formalized by loss functions.
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Statistical games: the basics in broad strokes

Statistical games: attach losses to lenses

A statistical game X Ñ Y is a triple pc, c7, Lcq,
of which pc, c7q is a Bayesian lens X ÞÑ Y ,
and Lc is an accordingly-typed loss function.

(‘Game’ due to structural similarity to compositional game theory [3, 4].)

This gives a 2nd fibration πLoss : StatGame Ñ BayesLens.
(We’ll see how loss functions compose later.)

Sections of this fibration capture some important quantities in statistics:
relative entropy (a.k.a. Kullback-Leibler divergence);
(log) likelihood;
free energy (a.k.a. ‘ELBO’).

Let’s see how this works ...
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Relative entropy and copy-composition Relative entropy

The relative entropy and its chain rule

Relative entropy measures ‘divergence’ between distributions:
DY : CpI, Y q ˆ CpI, Y q Ñ R`, with DY pα, α1q “ 0 ðñ α “ α1.

It can be indexed by channels: given parallel c, c1 : XÑ‚ Y , define
Dc,c1 : X Ñ R` by Dc,c1pxq :“ DY

`

cpxq, c1pxq
˘

.

It satisfies a “chain rule” that we can almost write as

Dd‚c,d1‚c1pxq “ Dc,c1pxq `
`

c˚Dd,d1

˘

pxq

“ Dc,c1pxq ` E
y„cpxq

“

Dd,d1pyq
‰

... but not quite.
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Relative entropy and copy-composition Copy-composition

Problem: a failure of compositionality

Relative entropy is the expected difference in log probability:

DY pα, α1q “ E
y„α

“

log pαpyq ´ log pα1pyq
‰

But pd‚cpz|xq “ Ey„cpxq

“

pdpz|yq pcpy|xq
‰

.
And log doesn’t commute with expectations!

On the other hand, if we copy the intermediate variable ...

c d
X

Y

Z
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Relative entropy and copy-composition Copy-composition

Solution: copy-composition

... we get a ‘copy-composite’ channel d ‚2 c : XÑ‚ Y b Z
with density pd‚2cpy, z|xq “ pdpz|yq pcpy|xq.

The expectation has gone away, and so our chain rule is satisfied:

Dd‚2c,d1‚2c1pxq “ Dc,c1pxq `
`

c˚Dd,d1

˘

pxq

Challenge: adjust C so that composition means copy -composition.
Composites need to carry their intermediaries.
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Relative entropy and copy-composition Copy-composition

A bicategory of copy-composite processes

The trouble is that copy-composition is not strictly unital:
idY ‚2c has type XÑ‚ Y b Y , not XÑ‚ Y !

But we can think of d ‚2 c as a Y -coparameterized morphism XÝÑ
Y
‚ Z,

and adjust the Copara construction [5] accordingly.

This yields a bicategory, Copara2pCq.
Horizontal composition is copy-composition.
2-cells are “changes of coparameter”.

The structure morphisms deal with the book-keeping,
introducing and deleting copies where necessary.

* Still, I’m not sure this is the best way; I’ve since discovered others! (See bonus slide...)
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Loss models Fibrational perspective

Fibrations of copy-composite lenses and games

The picture starts to look like this:

StatGame

BayesLens

Copara2pCq

C

πLoss

πLens

: Copara2pCq Ñ C discards coparameters.
There is a canonical (lax) inclusion C ãÑ Copara2pCq,
yielding a section of .
Sections of πLens are inference systems, e.g. :

(since we have a “coparameterized BUCO” result.)

Sections of πLoss are loss models, e.g. relative entropy.

So what are loss functions, in general? And how do they compose?
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Loss models Loss functions

Loss functions, externally and internally

‘Externally’: a loss function is a map Lc : CpI,Xq ˆ Y Ñ R`,
associated to a lens pc, c1q.

If C has bilinear effects*, we can internalize this to a state-dependent effect
Lc : Y

X
ÝÑ‚ I — i.e., a function CpI,Xq Ñ CpY, Iq.

Example categories where this works:
the Kleisli category of a free module monad;
sfKrn, the category of “s-finite kernels”.

N.B. Each CpX, Iq is then a monoidal category:
morphisms of effects are ‘differences’; monoidal product is `.
This extends to loss functions (via “state-dependent differences”).

* Cp´, Iq has a commutative monoid structure compatible with copy-composition.
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Loss models Loss functions

Examples

Relative entropy: KLpc, c7qβpyq :“ D
c7

β ,c
:

β
pyq “ DX

`

c7

βpyq, c:

βpyq
˘

.

Log likelihood: MLEpc, c7qβpyq :“ ´ log pc ‚βpyq.

Free energy: FEpc, c7qβpyq :“ KLpc, c7qβpyq ` MLEpc, c7qβpyq.
Alternatively, FE “ KL ` MLE.

... But how do they compose? (Where does the chain rule enter?)
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Loss models Loss models

Loss models: compositional loss functions

Loss functions compose much like inversions.

Given pc, c7, Lcq : X Ñ Y and pd, d7, Ldq : Y Ñ Z, Ld ˝ Lc “ Ld
c ` d7

c
˚
Lc.

More explicitly, pLd ˝ Lcqβpzq “ Ld
c ‚βpzq ` E

y„d7

c ‚β
pzq

“

Lcpyq
‰

.

A loss model is an assignment of loss functions to lenses
that is compatible with this chain rule.

Example: KL
`

pd, d7q ˝| pc, c7q
˘

“ KLpd, d7qc ` d7
c

˚
KLpc, c7q.

(This follows from our earlier chain rule.)

However ...
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Loss models Loss models

Laxness

Unlike KL, not all loss models are strict sections of πLoss!

With morphisms between loss functions, we can consider lax loss models:
the laxators measure the difference from Ld ˝ Lc to Ld˝|c.

Hence, for a given C, we have a category of (lax) loss models LosspCq;
morphisms of loss models are ‘icons’.

Examples: MLE and thus FE are lax loss models.

But this is not the only kind of laxness around! ...
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Monoidal structures A zoo of them!

Monoidal structures

There are a few monoidal structures here.

1 C, Copara2pCq, and BayesLens are all standardly monoidal;
and hence so is StatGame.

2 We also have the sum of loss functions Lc ` Lc1

: Y
X
ÝÑ‚ I.

3 And this induces a monoidal structure on LosspCq.
(We saw this when defining FE as KL ` MLE.)

4 Typically there are also monoidal structures on loss models themselves!
Hence we have MonLosspCq ãÑ LosspCq.
These structures are generally lax (due to correlations in the priors).
Thus each of KL,MLE, and FE are lax monoidal.
(But KL on parallel channels is strict monoidal; see [6, Remark 5.4.11] ...)
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Concluding remarks Review

Review of the talk

Statistical games formalize ‘local’ approximate inference,
yielding a fibration over Bayesian lenses.

Using copy-composition, the relative entropy chain rule is witnessed
by a (strict) section of this fibration.

Other important statistical quantities give lax sections.

And all of these admit various monoidal structures.

(However, the bicategory Copara2pCq seems inessential ...)
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Concluding remarks Bonus

Bonus: another route to copy-composition

I can see at least two alternatives to Copara2pCq. Here’s one.

Instead of channels c as horizontal 1-cells, use their densities pc.
Construct a decorated cospan double category accordingly:

e.g. A
pc
ÝÑ C

pd
ÝÑ D :“

pc pd

A B C D

0-cells are sets of objects in C.
Horizontal 1-cells are cospans decorated by densities.
Vertical 1-cells are ‘reindexings’; 2-cells are compatible channels.

Note that this has copy-composition built in, without hacks.
It’s also more faithful to “factor graphs”.
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