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Preview: the structure of active inference

I will introduce the concept of active inference doctrine, a functorial way of packaging up
everything needed for a free energy framework:

a category of parameterized statistical games which come with contextual fitness functions,
along with a dynamical semantics, i.e. an assignment of systems that ‘play’ those games.

At the end, I will discuss some open problems and work-in-progress:
in particular, to deal with nested and nonstationary systems, and intervention.

Nonetheless, we can already capture any classical generative model,
and we get a notion of “Markov blanket” for free!

First, we will begin with a quick overview of compositional probability theory ...
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Compositional Probability and Bidirectionality

Markov categories for (conditional) probability

3 / 42



Compositional Probability and Bidirectionality

Joint states and generative models
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Compositional Probability and Bidirectionality

Bayes’ rule, categorically

As a ‘dagger’ operation on stochastic channels:

Note that the Bayesian inverse channel depends on the prior!
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Compositional Probability and Bidirectionality

The bidirectionality of Bayesian inference

Given a ‘generative’ channel c : X → DY , the
corresponding ‘recognition’ channel has a
state-dependent type c† : DX × Y → DX .

A pair of a forwards map with a ‘dependent’
backwards map is called a lens.

Lenses are a common pa�ern in ‘bidirectional’
systems (e.g. economic games, databases).

I proved that the inverse of a composite channel
(hierarchical generative model) is the lens
composite of its components [1].

This explains formally the bidirectional
structure of predictive coding.

And it turns out to be rather useful for our
purposes today!

Figure: Bastos et al. [2]
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Compositional Probability and Bidirectionality

Bayesian lenses

These Bayesian lenses form the morphisms of a category whose objects are measurable spaces.
These morphisms (the lenses) compose like this:

c

c†

X

A B

Y

X

d

d†
C

Z

Y ∼=

c

c†

X

A

d

d†
C

Z

c

But how does the right-hand side backwards part relate to the inverse of the composite d • c?
Answer: they are the same! So we have a nice compositional structure here.
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Compositional Probability and Bidirectionality

Bayesian updates compose ‘optically’

c
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Z
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Compositional Probability and Bidirectionality

The graphical proof

d†c•π

π
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Statistical Games for Approximate Inference

Statistical games: motivation

Given a stochastic channel c : X → DY and a prior π : DX , we can form the inversion
c†π : Y → DX . And we’ve seen that these pairs form lenses.
Why is this useful?

Typically, obtaining c†π is computationally di�icult: we usually need to approximate it.

This gives us a lot of freedom. O�en, one approximation scheme might be ‘be�er’ than
another, and we should like to quantify this.

And, o�en, the fitness of our approximation depends on how it interacts with the world:
the prior we choose, and the dataset we have.

So the approximation is typically context-dependent and parameterized.

We can formalize both aspects using ideas from ‘open’ game theory.
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Statistical Games for Approximate Inference

Depicting the ‘type’ of a lens

First, it will be useful to compress our depictions somewhat.
The lens on the le� is an element of the set on the right:

c

c†

X

A B

Y

X ∈

X

A

×

�

Y

B

(Really, this just hides the channel labels...)
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Statistical Games for Approximate Inference

Context for inference problems

To formalize the context-dependence of the approximation fitness, we need to formalize context.

A context is a way of making an ‘open’ system into a ‘closed’ one: a�er all, closed systems don’t
have any context to depend on.

Given a lens with the type on the le�, its context will have the type on the right:

X

A

×

�

Y

B

×

�

X Y

A B

×

�

For abstract-nonsense reasons, this will close the lens ...
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Statistical Games for Approximate Inference

Context for inference problems

×
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B
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Statistical Games for Approximate Inference

Context for inference problems

×

�

×

�

×

�
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Statistical Games for Approximate Inference

Context for inference problems

But what is this weird context thing anyway?

×

�

X Y

A B

×

�

For categorical reasons, this thing simplifies into the following ...
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Statistical Games for Approximate Inference

Context for inference problems

X Y
B A

And we can read this o� as follows (you can trust me on this!):
a context for a Bayesian lens (X ,A) 7→ (Y ,B) is
a prior π : DX on X and a continuation channel Y → DB.

The continuation encodes how the lens’ environment turns a prediction about Y into an
(uncertain) observation in B.

We will call the set of these contexts (these prior-continuation pairs) C
(
(X ,A), (Y ,B)

)
.
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Statistical Games for Approximate Inference

The category of statistical games

We can now define the basic category SGame of statistical games.

The objects of SGame will be the objects (X ,A) of BayesLens.

Then a statistical game is a morphism (X ,A)→ (Y ,B) in SGame:
a lens (X ,A) 7→ (Y ,B) paired with a fitness function C

(
(X ,A), (Y ,B)

)
→ R.

Composition of statistical games is lens composition paired with the sum of the ‘local’ fitnesses.
Identities are identity lenses (which just pass on information) with 0 fitness.

But note that there’s not much freedom here! Where are the parameters?
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Statistical Games for Approximate Inference

Parameterized statistical games

In order that a system might have some control over its performance, there needs to be some
freedom built into the morphisms themselves.

We therefore define the category Para(SGame) of parameterized statistical games.

It has the same objects (X ,A) as before, but now each morphism (X ,A)
Σ−→ (Y ,B) comes with a

parameter space Σ.

Concretely, the morphisms are parameterized Bayesian lenses (Σ× X ,Σ× A) 7→ (Y ,B) paired
with fitness functions C

(
(Σ× X ,A), (Σ× Y ,B)

)
→ R.

Composing lenses (Σ× X ,Σ× A) 7→ (Y ,B) and (Γ× Y , Γ× B) 7→ (Z ,C) gives a lens
(Σ× Γ× X ,Σ× Γ× X) 7→ (Z ,C) parameterized in both spaces.

We are finally ready for some examples!
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Statistical Games for Approximate Inference

Example: maximum likelihood estimation

A Bayesian lens of the form (1, 1) 7→ (X ,X) is fully specified by a state π : 1→• X .

A context for such a lens is given by a trivial ‘prior’ on 1 and k : X→• X is any endochannel on X .
(Idea: “given a prediction, obtain a random observation”.)

A maximum likelihood game is any game of type (1, 1) 7→ (X ,X) for any X : C, and whose
loss function is Ek•π [− log pπ], where pπ is a density function for π.

NB: Ex∼π [f ] = E(f • π) =
∫
x:X f (x)π(dx) when f : X → R and π : C(1,X).

Thinking of density as a measure of likelihood, note that an optimal strategy for an ML game is
one that maximises the likelihood of the state obtained from the context.
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Statistical Games for Approximate Inference

Example: Bayesian inference

By generalizing the forwards part of the lens from states to channels, we obtain the following.

Fix a channel c : Z→• X with density function pc : X × Z → R+ and a measure of divergence
between states on Z , D : C(1,Z)× C(1,Z)→ R. A corresponding (generalized) simple
Bayesian inference game is any game of type BayesLens((Z ,Z), (X ,X)) with loss function

E
x∼k•c•π

[
E

z∼c′π(x)
[− log pc(x|z)] + D(c′π(x), π)

]
= E

z∼c′π•k•c•π

[
−
∫
X

log pc(dk • c • π|z)

]
+ D(c′π • k • c • π, π)

where π : I→• Z and k : X→• X , and where the second line follows from the first by linearity.

NB: since Bayesian updates compose optically, these games are closed under composition,
giving hierarchical Bayesian inference games.
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Statistical Games for Approximate Inference

Example: variational autoencoder

By le�ing the choice of ‘forwards’ channel vary, we obtain autoencoder games.
Fix a family F ↪→ C(Z ,X) of forward channels and a family P ↪→ C(X ,Z) of backward channels
such that each c : F admits a density function pc : X ⊗ Z → R+ and each d : P admits a
density function q : Z ⊗ X → R+. (This determines the lens parameterization: Σ = F × P .)

Then a simple variational autoencoder game is any game of type (Z ,Z)→ (X ,X) with loss
function given by the free energy φ(x) expected in the context (π, k):

E
x∼k•c•π

[φ(x)] = E
z∼c′π(x)

[
log

q(z|x)

pc(x|z)pπ(z)

]
where π : I→• Z admits a density function pπ : Z → R+, q : Z ⊗ X → R+ is a density function
associated to c′π , and k has type X→• X .
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Statistical Games for Approximate Inference

Example: hierarchical active inference

And we can form not just ‘sequential’ hierarchies, but ‘parallel’ ones too, as in the following
depiction of (the lens part of) a ‘hiearchical active inference’ game:

S3

S3

×

�

⊗

A3

A3

×

�

⊗

×

�

×

�

×

�

S0

S0

×

�

A0

A0⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

23 / 42



Dynamical Semantics for Statistical Games
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Dynamical Semantics for Statistical Games

Dynamical semantics: motivation

OK, but we’re interested in models of living things, not just abstract games!

The free energy framework is an informal “process theory” of cognition: a specification of the
functions that a brain should implement, along with a model of how it might implement them.

Such models are what I call dynamical semantics: the abstract games are like an algebraic
description of the ‘program’ that is implemented by a system, and the dynamical semantics is
what gives the system life.

I call a subcategory of (parameterized) statistical games along with a dynamical semantics an
active inference doctrine.

Typically, we are interested in ‘open’ systems, away from thermodynamic equilibrium.
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Dynamical Semantics for Statistical Games

What is an ‘open’ dynamical system?

This is a wiring diagram.

An ‘open’ dynamical system is any dynamical
system that could sensibly fill one of the boxes.

The dynamics typically depend on some inputs
or parameters, and the system might produce
outputs to be consumed by some other.

In deterministic discrete time, we might have a
pair of functions update : S × I → S and
output : S → O. But we can work quite
generally.

The key thing is that open systems can be wired together thus.
Wiring ‘inner’ boxes into ‘outer’ boxes gives a multicategory.
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Dynamical Semantics for Statistical Games

The multicategory (‘operad’) of wiring diagrams

Towards a formal syntax for circuit diagrams: (input to output :: le� to right)

e2
Z C σ2(e2)C Z

Y B

e2
Z C

σ2(e2)C Z

Y B

Y B

CyZ BZyYC BZyYC ⊗ CyZ → ByY

NB: ‘Polynomial’ notation: coe�icients are outputs, exponents are inputs
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Dynamical Semantics for Statistical Games

Dynamical ‘contexts’ and Markov blankets

We also have a notion of ‘context’ in the dynamical se�ing, closely related to Markov blankets:

Z C

C Z

Y B

B Y

YyB ⊗ BZyYC ⊗ CyZ → y

Here, the outer box makes a closed system.

For the middle box, its wiring to the top and bo�om boxes is its
context.

For the composite system in the dashed box, the context is just the
bo�om box. Note how the inputs and outputs on the context are
precisely the inverse of those on the system at hand.

In a wiring diagram, a Markov blanket of a subdiagram is a context.

�estion: Given a wiring diagram, can we assign statistical games
to its decompositions, “as if” the subsystems were alive?
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Dynamical Semantics for Statistical Games

Dynamical semantics for statistical games

We will write Sys(Oy I) for the category of dynamical systems suitable for filling the box Oy I .

A game with dynamical semantics will be just like a statistical game, but instead of a fitness
function, we will have a “dynamical semantics” function. Given a lens of type (X ,A) 7→ (Y ,B),
the dynamical semantics map will have type Sys(ByY )→ Sys(AYyXB).
(Again, we think of it as a way to wire a system to its environment.)

Composition of dynamical games is similar to statistical game composition:
lens composition, plus wiring.

That is, given (X ,A) 7→ (Y ,B) 7→ (Z ,C), we need to obtain a semantics map
Sys(CyZ )→ Sys(AZyXC).

We will draw this on the next slides.
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Dynamical Semantics for Statistical Games

Dynamical semantics: composition law

We are given the semantics functions

σ1 : e1
Y B → σ1(e1)B Y

X A

σ2 : e2
Z C → σ2(e2)C Z

Y B

and seek to form a composite semantics function of the type

σ21 : e2
Z C → σ21(e2)C Z

X A
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Dynamical Semantics for Statistical Games

Dynamical semantics: composition law

Given some e2 : Sys(CyZ ), we can use the
given semantics function σ2 to obtain a system
σ2(e2), and compose this with e2 to obtain a
system of the type ByY , which we call e1:

e1 :=

e2
Z C

σ2(e2)C Z

Y B

Y B

With this e1 : Sys(ByY ), we can use σ1 to
obtain a system σ1(e1). Compose this with
σ2(e2) to get the composite system we seek:

σ21(e2) :=

B Y

X A

C Z

Y B

σ2(e2)

σ1(e1)

X

C Z

A

Notice how we start with the ‘outermost’ system first!
And notice how we have ‘internal’ (e.g. AyX ) wiring above and ‘external’ wiring below (e.g. ZyC).
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Dynamical Semantics for Statistical Games

Dynamical semantics: identities

We also need an ‘identity semantics’ to correspond to the identity lens:

B Y

Y B

C Z

Y B

σ2(e2)

Y

C Z

B

=

C Z

Y B

σ2(e2)

Y

C Z

B

This does the job, so we have a category!

32 / 42



Dynamical Semantics for Statistical Games

Parameterized dynamical semantics

But of course we really need these things to be parameterized to be useful.
We can do that, again using the Para construction.

So, a parameterized dynamical game (X ,A) 7→ (Y ,B) is represented by a parameterized lens
(Σ× X ,Σ× A) 7→ (Y ,B) along with a dynamical semantics map accordingly:
Sys(ByY )→ Sys(ΣXByΣAY ).

I’ll show the composition of these on the next slides.
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Dynamical Semantics for Statistical Games

Parameterized dynamical semantics: composition law

We are given the semantics functions

σ1 : e1
Y B → σ1(e1)

B Y

X

ΣΣ

A

σ2 : e2
Z C → σ2(e2)

C Z

Y

ΓΓ

B

and seek to form a composite semantics function of the type

σ21 : e2
Z C → σ21(e2)

C Z
X

ΣΣ

A

ΓΓ
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Dynamical Semantics for Statistical Games

Parameterized dynamical semantics: composition law

Given some e2 : Sys(CyZ ), we can use the
given semantics function σ2 to obtain a system
σ2(e2), and compose this with e2 to obtain a
system of the type ByY , which we call e1:

e1 :=

e2
Z C

σ2(e2)
C Z

Y B

Y B

Σ Σ

With this e1 : Sys(ByY ), we can use σ1 to
obtain a system σ1(e1). Compose this with
σ2(e2) to get the composite system we seek:

σ21(e2) :=

B Y

X A

C Z

Y B
σ2(e2)

σ1(e1)

X

C Z

A

Γ

Σ
ΣΣ

ΓΓ

Γ

Σ
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Dynamical Semantics for Statistical Games

Two active inference doctrines

Finally, with all that set-up, we are able to characterize formally various free-energy
implementations as compositional active inference doctrines.

Specifically, we have (at least) two theorems characterizing such doctrines:

the ‘Laplace’ doctrine, from by the ‘classical’ free energy literature,
with a structure much like biological neural circuits

another from the machine learning literature: the variational autoencoder doctrine
And the compositional structure means that it should be possible to write a rigorous ‘compiler’
for such models, generalizing (for example) the DCM so�ware.

But I’m not going to spell out the details today, as they are quite familiar!

Instead, I would like to point out some inelegancies and works-in-progress.
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Dynamical Semantics for Statistical Games

Some oddities

Some aspects of the formalism I presented are not quite satisfactory:

There is a distinction between ‘internal’ and ‘external’ interfaces which is collapsed onto
one type of box: from an external perspective, you don’t observe my internal interfaces!

As a system moves or evolves, its wiring might change: both internally (e.g. synaptic
plasticity or pruning) and externally (e.g. by entering a conference call). But the wiring
diagrams I presented are all static! (Shouldn’t action a�ect the world??)

As a system moves around its environment, the expected type of its observations might
change (e.g. depending on task contingencies), and indeed there might be uncertainty
about these types!

Where is the system’s internal representation of the external wiring structure?
How can we see it in the formalism?

There seems to be quite an elegant answer, related both to nested systems (boxes may be filled
with boxes) and structure-learning.
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Structure Learning, Nested Systems, and Dependent Types

Dependent types: the logic of hierarchical interaction

All of those oddities can be resolved using dependent types:
typically when we have a set or a space, it just ‘is’.

Dependent types allow objects to vary according to our position in some ‘base space’.

Some examples:

A creature’s ‘internal interface’ (my morphology) depends on its species.

My ‘wiring’ might change depending on my current task or state. The type of expected
perceptions or appropriate actions may vary similarly.

A useful weather forecast might depend on whether I am on land or at sea.

A parameterized game depends on its parameters.

Bayesian inversion depends on the prior.

All of these are dependent types, but classical generative models cannot easily account for this.
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Structure Learning, Nested Systems, and Dependent Types

Mathematically: dependent types are bundles

A bundle is a collection of spaces E(b)
parameterized by some other space B.

We can think of this as a dependent sum, writing
E :=

∑
b:B E(b).

The elements of the total space E are ‘dependent’
pairs (b, e), with b : B and e : E(b).

If E(b) = E (i.e. not dependent), then we have a
trivial bundle: E =

∑
b E(b) =

∑
b E = B× E .

We identify the bundle with the projection
π : E→ B onto the base space: π(b, e) = b.

Many cognitive situations have this structure
(consider the cognitive map of the Shard), but it is
not captured by classical generative models!
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Structure Learning, Nested Systems, and Dependent Types

Some current directions

We can generalize the Stat indexed category defining Bayesian lenses in a way that
interacts nicely with a topos and gives us convex sums of types and terms.

Bayesian updating induces a kind of base changed in this generalized Stat category.

We should think of the wiring as being encoded in the structure of the base space (i.e., the
parameterization).

We can consider action and intervention as a change in this wiring:
another kind of base change. (This has a nice type-theoretic interpretation!)
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Structure Learning, Nested Systems, and Dependent Types

Thank you!
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